O.P.Code: 20AG0714

**R20** 

H.T.No.

## SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

## **B.Tech III Year II Semester Regular Examinations August-2023**

## IRRIGATION & DRAINAGE ENGINEERING

(Agricultural Engineering)

|    |        | (Agricultural Engineering)                                                   |                 |              |            |
|----|--------|------------------------------------------------------------------------------|-----------------|--------------|------------|
|    |        |                                                                              |                 | <b>Iarks</b> | : 60       |
|    |        | (Answer all Five Units $5 \times 12 = 60$ Marks)                             |                 |              |            |
|    |        | UNIT-I                                                                       |                 |              |            |
| 1  | a      | Define the following: (i) Base and crop period (ii) Gross command area       | CO1             | L1           | <b>6M</b>  |
|    |        | and culturable command area (iii) Irrigation interval.                       |                 |              | 1          |
|    | b      | Find the duty of water if a crop requires a total depth of 920 mm of water   | CO1             | L2           | <b>6M</b>  |
|    | ~      | for a base period of 120 days.                                               | 001             | ~            | 01.1       |
| ** |        | OR                                                                           |                 |              |            |
| 2  |        | What are the factors effecting duty?                                         | CO1             | L2           | 6M         |
| 4  | a<br>b | Č .                                                                          | CO1             |              |            |
|    | D      | A canal was designed to supply irrigation needs of 1200 ha of land growing   | COI             | L2           | 6 <b>M</b> |
|    |        | rice of 140 days base period and having a delta of 134 cm. IF the canal      |                 |              |            |
|    |        | waters are used to irrigate wheat of base period 120 days and having a delta |                 |              |            |
|    |        | of 52 cm the area that can be irrigated is?                                  |                 |              |            |
|    |        | UNIT-II                                                                      |                 |              |            |
| 3  | a      | Write a short note on sprinkler layout and draw the system design.           | CO <sub>2</sub> | L3           | <b>6M</b>  |
|    | b      | A sprinkler system 18m spacing along the main and 12m along the laterals     | CO <sub>2</sub> | <b>L2</b>    | <b>6M</b>  |
|    |        | is used to irrigate crop grown on coarse sandy soil over compact soil land   |                 |              |            |
|    |        | slope of 3%. Twenty sprinklers are used to irrigate field. Optimum           |                 |              |            |
|    |        | application rate 3.75cm/hr. Determine the total system capacity.             |                 |              |            |
|    |        | OR                                                                           |                 |              |            |
| 4  | a      | What are the inventory resource and parameters required for design of        | CO <sub>2</sub> | L1           | <b>6M</b>  |
|    |        | sprinkler.                                                                   |                 |              |            |
|    | b      | Define Net depth of water application, Irrigation frequency, and Gross       | CO <sub>2</sub> | L3           | <b>6M</b>  |
|    |        | depth of water application.                                                  |                 |              |            |
|    |        | UNIT-III                                                                     |                 |              |            |
| 5  | Exp    | plain the need of filters in MIS and types of filters used with its working. | CO <sub>3</sub> | <b>L5</b>    | 12M        |
|    |        | OR                                                                           |                 |              |            |
| 6  | a      | Briefly explain the pressure differential fertigation method.                | CO <sub>3</sub> | <b>L5</b>    | <b>6M</b>  |
|    | b      | Explain fertilizer solubility and their compatibility.                       | CO <sub>3</sub> | L3           | <b>6M</b>  |
|    |        | UNIT-IV                                                                      |                 |              |            |
| 7  | a      | Define subsurface drainage and write the specific benefits of sub surface    | CO <sub>4</sub> | L2           | <b>6M</b>  |
|    |        | drainage.                                                                    |                 |              |            |
|    | b      | Explain leaching requirement.                                                | CO4             | L3           | <b>6M</b>  |
|    |        | OR                                                                           |                 |              | 02.2       |
| 8  | a      | Define water logging, List and explain the causes and impact of water        | CO4             | 1.3          | <b>6M</b>  |
| ,  |        | logging.                                                                     | 00.             | LU           | 01/1       |
|    | b      | Write a short note on Drainage porosity and drain Envelopes in tile          | CO4             | 1.2          | <b>6M</b>  |
|    | •      | drainage system.                                                             | 001             | 22           | OIVI       |
|    |        | UNIT-V                                                                       |                 |              |            |
| 0  |        | · · · · · · · · · · · · · · · · · · ·                                        | COS             | т 2          | CRA        |
| 9  | a      | Explain manning's equation and its application.                              | CO5             | L3           | 6M         |
|    | b      | Briefly explain about indices used in economic evaluation of drainage        | CO <sub>6</sub> | L4           | <b>6M</b>  |
|    |        | system.                                                                      |                 |              |            |
| 10 |        | OR                                                                           | 005             | T 4          | ( ) A      |
| 10 | a      | Briefly explain about the Glover-Dumm Equation.                              | CO5             | L2           | 6M         |
|    | b      | Explain the Investigation of drain design parameters through drain testing.  | <b>CO6</b>      | L3           | 6 <b>M</b> |
|    |        | *** END ***                                                                  |                 |              |            |